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Abstract
There is intense interest in developing novel biomaterials which support the invasion and

proliferation of living cells for potential applications in tissue engineering and regenerative

medicine. Decellularization of existing tissues have formed the basis of one major approach

to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium

tissue of apples and a simple preparation methodology to create implantable cellulose scaf-

folds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type,

immunocompetent mice (males and females; 6–9 weeks old). Following the implantation,

the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis

(H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis

revealed a characteristic foreign body response to the scaffold 1 week post-implantation.

However, the immune response was observed to gradually disappear by 8 weeks post-

implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue

and active fibroblast migration within the cellulose scaffold was observed. This was con-

comitant with the deposition of a new collagen extracellular matrix. Furthermore, active

blood vessel formation within the scaffold was observed throughout the period of study indi-

cating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds

retain much of their original shape they do undergo a slow deformation over the 8-week

length of the study. Taken together, our results demonstrate that native cellulose scaffolds

are biocompatible and exhibit promising potential as a surgical biomaterial.

Introduction
The development of novel biomaterials for tissue engineering strategies is currently under
intense investigation [1–3]. Biomaterials are being developed for the local delivery of therapeu-
tic cells to target tissues [4,5], the regeneration of damaged or diseased tissues [6–9] or the
replacement of whole organs [10–15]. In their most general form, biomaterials provide a three-
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dimensional (3D) scaffold which attempts to mimic the in vivo cellular milieu [14,16].
Approaches have been developed to engineer the mechanical [17–24], structural [25] and bio-
chemical properties [26–29] of these scaffolds with varying complexity. As well, significant
efforts are underway to ensure that such implanted biomaterials are biocompatible and stimu-
late only minimal immune responses. The efforts in biomaterials research is being driven by
the significant need for replacement organs and tissues. With an aging population, the gap
between patients waiting for organ transplants and available donor organs is rapidly increasing
[30]. While clinical applications of biomaterials have been somewhat limited, physicians have
successfully utilized synthetic biomaterials to treat various damaged tissues and structures,
such as skin, gum, cartilage, and bone [31–36].

Biomaterial scaffolds can take several forms such as powders, gels, membranes, and pastes
[1,2]. Such polymer or hydrogel formulations can be moulded or 3D-printed to produce forms
that are of therapeutic values [37–39]. An alternative approach to these synthetic strategies is
whole organ decellularization [10,12–16]. Indeed, it has been shown that it is possible to disso-
ciate the cells from a donated organ, leaving behind the naturally occurring scaffold matrix,
commonly referred as a ghost organs [14]. The ghost organs lack any of the cells from the
donor and can be subsequently cultured with cells derived from the patient or another source.
Such approaches have already been utilized to repair and replace defective tissues [40–42]. In
the past several years, many body parts have been created using synthetic and decellularization
approaches, including the urethra, vaginal, ear, nose, heart, kidney, bladder, and neurological
tissues [14,38,39,43–47].

However, these approaches are not without some disadvantages [48]. Synthetic techniques
can require animal products and decellularization strategies still require donor tissues and
organs. There has also been intense investigation into the development of resorbable biomate-
rials [49]. In these cases, the aim is to provide the body with a temporary 3D scaffold onto
which healthy tissues can form. After several weeks or months, the implanted scaffold will be
resorbed leaving behind a completely natural healthy tissue [26,29,50,51]. Although this is an
ideal approach, many non-resorbable biomaterials (ceramic, titanium) have been successfully
employed in clinical settings and play a major role in numerous therapies [2,49,52–57]. Impor-
tantly, resorbable biomaterials suffer from the fact that regenerated tissues often collapse and
become deformed due to the loss of structure [58–62]. For example, for several decades,
research on ear reconstruction from engineered cartilage has shown that biomaterial implants
eventually collapse and become deformed as the implanted scaffolds break down and resorb
[63]. However, recent successful approaches have relied on the use of resorbable collagen scaf-
folds embedded with permanent titanium wire supports [53,64,65]. Therefore, the need for
non-resorbable, yet biocompatible, scaffolds persists in the field of tissue and organ
engineering.

Recent complementary approaches have utilized scaffolding materials that are not derived
from human organ donors or animal products. Namely, various forms of cellulose have been
shown to have utility in both in vitro and in vivo studies [66–71]. Cellulose is abundant in
nature, is easily produced and sourced, can be chemically modified to control surface biochem-
istry and produced as hydrogels with tuneable porosity and mechanical properties [67,72–77].
Moreover, nanocrystalline, nanofibrillar and bacterial cellulose constructs and hydrogels also
have been shown to support the proliferation and invasion of mammalian cells in vitro and in
vivo with high biocompatibility [78–83]. In our recent work, we developed an orthogonal, yet
complementary, approach to organ decellularization and synthetic cellulose strategies. We
developed a highly robust and cost effective strategy for producing cellulose biomaterials from
decellularized apple hypanthium tissue [27]. The scaffolds required no further complex pro-
cessing as is often the case in the production of nanocrystalline, nanofibrillar and bacterial
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cellulose constructs. The cellulose scaffolds were employed for in vitro 3D culture of NIH3T3
fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. Our previous
work revealed that these cells could adhere, invade and proliferate within the cellulose scaffolds
and retain high viability even after 12 continuous weeks of culture.

Our previous work opens the question of in vivo biocompatibility [27]. Therefore, the
objective of this study is to characterize the response of the body to apple-derived cellulose
scaffolds. Macroscopic (~25mm3) cell-free cellulose biomaterials were produced and subcu-
taneously implanted in mouse model for 1, 4 and 8 weeks. Here, we assess the immunological
response of immunocompetent mice, deposition of extracellular matrix on the scaffolds and
evidence of angiogenesis (vascularization) in the implanted cellulose biomaterials. Notably,
although a foreign body response was observed immediately post-implantation, as expected
for a surgical procedure, by the completion of the study only a low immunological response
was observed with no fatalities or noticeable infections whatsoever in all animal groups. Sur-
rounding mouse cells were also found to invade the scaffold, mainly activated fibroblasts,
and deposit a new extracellular matrix. As well, the scaffold itself was able to retain much of
its original shape and structure over the 8-week study. Importantly, the scaffolds clearly had
a pro-angiogenic effect, resulting in the growth of functional blood vessels throughout the
implanted biomaterial. Taken together, our work demonstrates that we can easily produce
3D cellulose scaffolds that are biocompatible, becoming vascularized and integrated into sur-
rounding healthy tissues.

Material and Methods

Animals
All experimental procedures were approved by the Animal Care and Use Committee of the
University of Ottawa. Wild-type C57BL/10ScSnJ mice (males and females; 6–9 weeks old;
n = 7 mice for each group) were purchased from The Jackson Laboratory (Bar Harbor, Maine,
USA) and bred in our facilities. All animals were kept at constant room temperature (±22°C)
and humidity (*52%). They were fed a normal chow diet and kept under a controlled 12
hours light/dark cycle.

Cellulose scaffold preparation
As described previously [27], McIntosh Red apples (Canada Fancy) were stored at 4°C in the
dark for a maximum of two weeks. In order to prepare apple sections, the fruit was cut with a
mandolin slicer to a uniform thickness of 1.14±0.08mm, measured with a Vernier caliper. Only
the outer (hypanthium) tissue of the apple was used. Slices containing visible ovary-core tissue
were not used. The slices were then cut parallel to the direction of the apple pedicel into squares
segments of 5.14±0.21mm in length and with an area of 26.14±1.76mm2. Apple tissue was
decellularized using a well-established protocol [14] for removal of cellular material and DNA
from tissue samples while leaving behind an intact and three-dimensional scaffold. Individual
apple tissue samples were placed in sterilized 2.5ml microcentrifuge tubes and 2ml of 0.1%
sodium dodecyl sulphate (SDS; Sigma-Aldrich) solution was added to each tube. Samples were
shaken for 48 hours at 180 RPM at room temperature. The resultant cellulose scaffolds were
then transferred into new sterile microcentrifuge tubes, washed and incubated for 12 hours in
PBS (Sigma-Aldrich). The cellulose scaffold were sterilized by incubation in 70% ethanol for 1
hour and then repeatedly washed 12 times with PBS. The samples were then kept in PBS. At
this point, the samples were immediately used or stored at 4°C for no more than 2 weeks.
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Cellulose implantation
The mice were anesthetized using 2% Isoflurane USP-PPC (Pharmaceutical partners of Can-
ada, Richmond, ON, Canada) with the eyes protected the application of ophthalmic liquid gel
(Alco Canada In., ON, Canada). The mouse back hairs were shaved with the underlying skin
cleaned and sterilized using ENDURE 400 Scrub-Stat4 Surgical Scrub (chlorhexidine gluco-
nate, 4% solution; Ecolab Inc., Minnesota, USA) and Soluprep (2% w/v chlorhexidine and 70%
v/v isopropyl alcohol; 3M Canada, London, ON, Canada). Animal hydration was maintained,
via subcutaneous injection (s.c) of 1 ml of 0.9% sodium chloride solution (Hospira, Montréal,
QC, Canada). Throughout the surgical procedures all strict sterility measures were upheld for
survival surgeries. To implant the scaffolds, two 8mm incisions were cut on the dorsal section
of each mouse (upper and lower). Two cellulose scaffold samples were separately and indepen-
dently implanted into each mouse. The incisions were then sutured using Surgipro II monofila-
ment polypropylene 6–0 (Covidien, Massachusetts, USA) and transdermal bupivicaine 2% (as
monohydrate; Chiron Compounding Pharmacy Inc., Guelph, ON, Canada) was topically
applied to the surgery sites to prevent infection. Additionally, buprenorphine (as HCL)
(0.03mg/ml; Chiron Compounding Pharmacy Inc. Guelph, ON, Canada) was administrated s.
c. as a pain reliever. All animals were then carefully monitored for the following 3 days by ani-
mal care services and received additional treatment of the same pharmacological treatments.

Scaffold resections
At 1, 4 and 8 weeks after scaffold implantation, the mice were euthanized using CO2 inhalation.
After blood collection, the dorsal skin was carefully resected and immediately immersed in PBS
solution. The skin sections containing cellulose scaffolds were then photographed, cut and
fixed in 10% formalin for at least 48 hours. The samples were then kept in 70% ethanol before
being embedded in paraffin by the PALM Histology Core Facility of the University of Ottawa.

Histological analysis
Serial 5μm thick sections were cut, beginning at 1 mm inside the cellulose scaffold, and stained
with hematoxylin-eosin (H&E) and Masson’s trichrome. For immunocytochemistry, heat
induced epitope retrieval was performed at 110°C for 12 min with citrate buffer (pH 6.0). Anti-
CD31/PECAM1 (1:100; Novus Biologicals, NB100-2284, Oakville, ON, Canada), anti-alpha
smooth muscle actin (1:1000, ab5694, abcam, Toronto, ON, Canada) and anti-CD45 (1:3000;
ab10558, abcam, Toronto, ON, Canada) primary antibodies were incubated for a hour at room
temperature. Blocking reagent (Background Sniper, Biocare, Medical, Concorde, CA, USA)
and detection system MACH 4 (Biocare Medical, Concord, CA, USA) were applied according
to company specifications. For the evaluation of cell infiltration, extracellular matrix deposition
and vascularisation (angiogenesis), micrographs were captured using Zeiss MIRAXMIDI Slide
Scanner (Zeiss, Toronto, Canada) equipped with 40x objective and analysed using Pannoramic
Viewer (3DHISTECH Ltd., Budapest, Hungary) and ImageJ software. The scoring of inflam-
mation was evaluated by a pathologist. The scoring was subjectively assigned by qualitative
analysis of the magnitude of the total foreign response as well, the cell population proportions
within the foreign response.

Quantification of cellulose volume fraction
To quantitatively determine the average volume of the scaffolds occupied by cellulose H&E
images of bare scaffolds were processed according to the following protocol. At least 5 regions
of the interest (ROI) of approximate 900μm2 were identified in a given H&E image of bare
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cellulose. In total we analyzed n = 5 H&E images, for a total of 39 ROIs. The area occupied by
the cellulose was determined by creating a binary segmented image through thresholding. As
each H&E stained section was 5μm thick, this allowed us to determine the total volume occu-
pied by cellulose compared to the gross volume of the entire ROI. All image processing was
performed with ImageJ 1.47v.

Scanning electron microscopy (SEM)
The structure of cellulose was studied using a scanning electron microscopy. Globally, scaffolds
were dehydrated through successive gradients of ethanol (50%, 70%, 95% and 100%). Samples
were then gold-coated at a current of 15mA for 3 minutes with a Hitachi E-1010 ion sputter
device. SEM imaging was conducted at voltages ranging from 2.00–10.0 kV on a JSM-7500F
Field Emission SEM (JEOL, Peabody, MA, USA).

Statistical analysis
All values reported here are the average ± standard deviations. Statistical analyses were per-
formed with one-way ANOVA by using SigmaStat 3.5 software (Dundas Software Ltd, Ger-
many). A value of p< 0.05 was considered statistically significant.

Results

Scaffold Preparation
Cellulose scaffolds were prepared from apple tissue using a modified decellularization tech-
nique we have previously described [27]. All scaffolds were cut to a size of 5.14±0.21 x 5.14
±0.21 x 1.14±0.08mm (Fig 1A), decellularized and prepared for implantation (Fig 1B). The
scaffolds appear translucent after decellularization due to the loss of all plant cellular material
and debris. The removal of apple cells was also confirmed with histological observation (Fig
1C) and scanning electron microscopy (Fig 1D). Analysis and quantification of the histological
images reveals an average cellulose cell wall thickness of 4.04±1.4μm, and that the cellulose
only occupies 16.9±3.0% of the total volume of the entire scaffold. The acellular cellulose scaf-
folds appear to maintain their shape very well and their structure is likely capable of being
invaded by nearby cells after implantation in an animal model.

Implantation of Cellulose Scaffolds
Two independent skin incisions (8mm) were produced on the back of each mouse to create
small pouches for the biomaterial implantation (Fig 2A). One cellulose scaffold (Fig 2B) was
implanted in each subcutaneous pouch. Throughout the study, there were no cases of mice
exhibiting any pain behaviour that may have been induced by the cellulose scaffold implanta-
tion and none of the mice displayed visible inflammation or infection. The cellulose scaffolds
were resected at 1 week, 4 weeks and 8 weeks after their implantation and were photographed
to measure the change in scaffold dimensions (Fig 2D–2F). At all-time points, healthy tissue
can be observed surrounding the cellulose scaffold with the presence of blood vessels, that are
proximal or in direct contact, and the scaffolds retain their square shape. The pre-implantation
scaffold had an area of 26.3±1.98mm2 and it was observed to slowly decrease as function of the
implantation time, based on the scaffold area that is visible to the naked eye on the skin (Fig
2G). At 8 weeks post-implantation, the scaffold dimensions reach a near plateau measurement
of 13.82±3.88mm2 demonstrating an approximate 12mm2 (48%) change over the course of
this study.
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Biocompatibility and cell infiltration in plant derived cellulose scaffolds
Scaffold biocompatibility and cell infiltration was examined with H&E staining of fixed cellu-
lose scaffolds at 1, 4 and 8 weeks following their implantation (Fig 3). The global views of longi-
tudinal section of representative cellulose scaffolds are shown in Fig 3A–3C. The scaffolds are
implanted under the muscular layer of the dermis. Interstitial fluids, stained in pink, can be
seen throughout the implanted scaffold, in contrast to a non-implanted scaffold (Fig 1C).
Within the global view it was observed that the scaffold maintains its general shape throughout
the study. In Fig 3D–3F, a magnified section of the perimeter of the scaffold is shown at each
post-implantation time points. At 1 week, the dermis tissue surrounding implant displays

Fig 1. Cellulose scaffold preparation.Macroscopic appearance of a freshly cut apple hypanthium tissue (A) and the translucent cellulose scaffold
biomaterial post-decellularization and absent of all native apple cells or cell debris (B). H&E staining of cross sectioned decellularized cellulose scaffold
(C). The cell walls thickness and the absence of native apple cells following decellularization are shown. The 3D acellular and highly porous cellulose
scaffold architecture is clearly revealed by scanning electron microscopy (D). Scale bar: A-B = 2mm, C-D = 100μm.

doi:10.1371/journal.pone.0157894.g001
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Fig 2. Cellulose scaffolds implantation and resection. The subcutaneous implantations of cellulose
scaffolds biomaterial were performed on the dorsal region of a C57BL/10ScSnJ mouse model by small skin
incisions (8 mm) (A). Each implant was measured before their implantation for scaffold area comparison (B).
Cellulose scaffolds were resected at 1 week (D), 4 weeks (E) and 8 weeks (F) after the surgeries and
macroscopic pictures were taken (control skin in C). The changes in cellulose scaffold surface area over time
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symptoms of an acute moderate to severe immune response (qualitative study performed by a
pathologist) (Fig 3D). As well a dense layer of cells can be seen infiltrating into the cellulose
scaffolds. The population of cells within the scaffold at 1 week consist mainly of granulocytes,
specifically; polymorphonuclear (PMN) and eosinophils (Fig 3D). There is also a population of
dead cells and apparent cell debris. Importantly, all of these observations are completely consis-
tent with an expected acute foreign body reaction that follows implantation [84–86]. At the 4
week point we observed a stark difference in both the surrounding epidermis tissue and in the
cell population migrating into the cellulose scaffold (Fig 3E). The epidermal tissue surrounding
the cellulose scaffold has a decreased immune response, now scored as mild to low. The popu-
lation of cells within the epidermis surrounding scaffolds now contain higher levels of macro-
phages and lymphocytes (Fig 3E). This is an anticipated characteristic of the foreign body

are presented (G). The pre-implantation scaffold had an area of 26.30±1.98mm2. Following the implantation,
the area of the scaffold declined to 20.74±1.80mm2 after 1 week, 16.41±2.44mm2 after 4 weeks and 13.82
±3.88mm2 after 8 weeks. The surface area of the cellulose scaffold has a significant decrease of about
12mm2 (48%) after 8 weeks implantation (* = P<0.001; n = 12–14).

doi:10.1371/journal.pone.0157894.g002

Fig 3. Biocompatibility and cell infiltration. Cross sections of representative cellulose scaffolds stained with H&E and anti-CD45. These global
view show the acute moderate-severe anticipated foreign body reaction at 1 week (A), the mild chronic immune and subsequent cleaning
processes at 4 weeks (B) and finally, the cellulose scaffold assimilated into the native mouse tissue at 8 weeks (C). Higher magnification regions of
interest (D-F), see inset (A-C), allow the observation of all the cell type population within biomaterial assimilation processes. At 1 week, we can
observe populations of granulocytes, specifically; polymorphonuclear (PMN) and eosinophils that characterize the acute moderate to severe
immune response, a normal reaction to implantation procedures (D). At 4 weeks, a decreased immune response can be observed (mild to low
immune response) and the population of cells within the epidermis surrounding scaffolds now contain higher levels of monocytes and lymphocytes
characterizing chronic response (E). Finally, at 8 weeks, the immune response has completely resorbed with the epidermis tissue now appearing
normal (F). The immune response observed with H&E staining is confirmed using anti-CD45 antibody, a well knownmarkers of leukocytes (G-I).
The population of cells within the scaffold are now mainly macrophages, multinucleated cells and active fibroblasts. Scale bars: A-C = 1mm,
D-F = 100μm and G-I = 500μm.

doi:10.1371/journal.pone.0157894.g003
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reaction to an implanted biomaterial, demonstrating the scaffold cleaning process [84–86].
There is also an increase in the population of multinucleated cells within the interior of the
scaffold as part of an inflammatory response (Fig 3E). Finally, 8 weeks post-implantation, the
immune response apparent at 1 and 4 weeks has completely disappeared (Fig 3F), with the epi-
dermis tissue now appearing normal. In fact, the epidermis tissue in contact with the cellulose
scaffold contains the same structures as normal epidermis tissue. In the cellulose scaffold
perimeter there is now a lower density of cells due to the decreased inflammation and notably,
there are no fragmented dead cells present. Instead, the population of cells now contain an ele-
vated level of macrophages, multinucleated cells and active fibroblasts, identified through mor-
phological analysis (H&E staining). The active fibroblasts (appearing spindle shaped), can be
observed migrating from the surrounding epidermis into the cellulose scaffold. In fact, fibro-
blasts were found throughout the cellulose scaffold. These results demonstrate that by 8 weeks
post-implantation the cellulose scaffold has been accepted by the host. In parallel with the
H&E inflammation analysis, we performed anti-CD45 staining to evaluate the level of inflam-
mation throughout the scaffold and surrounding dermis tissue (Fig 3G–3I). It is clear that the
inflammation throughout the dermis and within the scaffold is elevated after 1 week. However,
the amount of leukocytes significantly decreases in the surrounding dermis and scaffold over
the implantation time reaching a near basal level at 8 weeks. At each time point the majority of
infiltrated cells can be observed along the periphery of the cellulose scaffold. However, individ-
ual cells that have migrated from the periphery can also be observed within the center of the
scaffold.

Extracellular Matrix Deposition in the Cellulose Scaffolds
The presence of active fibroblasts led us to question if the cellulose scaffold was acting as a sub-
strate for the deposition of new extracellular matrix. This was determined using Masson’s Tri-
chrome staining of fixed cellulose scaffolds slides at each time point following implantation
(Fig 4). At 1-week post-implantation, the histological study shows the absence of collagen
structures inside the collagen scaffold (Fig 4A, 4D and 4G). After 4-weeks, small amounts of
collagen begin to be deposited inside the scaffold (Fig 4B, 4E and 4H) and by 8-weeks, large
amounts of collagen are clearly visible within many scaffold cavities (Fig 4C, 4F and 4I). The
presence of active fibroblasts identified through morphology (H&E staining, spindle shaped)
and anti-alpha smooth muscle actin staining (data not shown) are completely consistent with
the large degree of collagen deposits observed at 8-weeks. The complexity of the deposited col-
lagen network is highlighted in Fig 4I, where individual collagen fibers within the collagen
matrix are visible. This is in contrast to the characteristic high density, thick, cable-like organi-
zation of collagen found in scar tissue.

Vascularization of the Cellulose Scaffolds
Capillaries ranging from 8 to 25μm were also identified within the scaffolds as early as 1 week
post-implantation. At 4 week and 8 week post implantation, blood vessels and capillaries can
be observed extensively within the scaffold and the surrounding dermal tissue. We observed
blood vessels presence on the cellulose scaffold and in surrounding dermis in the macroscopic
photos taken during the resection (Fig 5A). Multiple cross sections of blood vessels, with the
presence of red blood cells (RBCs), are identified within 4 weeks of scaffold implantations (Fig
5B; H&E stain). The same results are obtained 8 weeks after implantation where capillaries
with RBC and endothelial cells are clearly seen (Fig 5C; Masson’s Trichrome). This data
prompted us to verify the presence of endothelial cells in capillary structures found within the
scaffold with anti-CD31 staining (Fig 5D).
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Discussion
In this study, our objective was to examine the in vivo biocompatibility of acellular cellulose
scaffolds derived from apple hypanthium tissue. To this end, acellular cellulose scaffolds were
subcutaneously implanted within immunocompetent mice to establish their biocompatibility.
Our data reveals that the implanted scaffolds demonstrate a low inflammatory response, pro-
mote cell invasion and extracellular matrix deposition, and act as a pro-angiogenic environ-
ment. Remarkably, none of the mice in this study died or demonstrated any symptoms of
implant rejection such as edema, exudates or discomfort during the course of this research
indicative of a successful implantation of the cellulose scaffolds. The implanted scaffolds are
composed of a porous network of cavities in which the original host plant cells resided [69].
This architecture efficiently facilitates transfer of nutrients throughout the plant tissue. As we
have shown here and in our previous study, the apple tissues are easily decellularized [27]. This
simple treatment changes the appearance of the hypanthium tissue so that it becomes transpar-
ent, as a result of the removal of cellular materials.

Several important conclusions emerge from the current study. First, after implantation, the
scaffolds are rapidly infiltrated with host cells, which begin with inflammatory cells. Consistent
with previous findings, the immune response of the host animals followed a well-known time-
line [84–88], ultimately demonstrating biocompatibility. As expected, the cell population
within the scaffold after 1 week post-implantation are mainly granulocytes, specifically; poly-
morphonuclear (PMN) and eosinophils, constituting a clear inflammatory response. The

Fig 4. Extracellular matrix deposition. Cross sections of representative cellulose scaffolds stained with Masson’s Trichrome (A-C). After 1 week
post-implantation, the magnification of region of interest in (A), see inset, show the lack of collagen structures inside the collagen scaffold (D, G).
As fibroblast cells start to invade the scaffold, collagen deposits inside the cellulose scaffold can be sparsely observed after 4 weeks (E, H).
Concomitant with the observation of activated fibroblast (spindle shaped cells) inside the cellulose scaffold, collagen network is clearly visible
inside the cavities after 8 weeks (F, I). Scale bars: A-C = 1mm, D-F = 100μm and G-I = 20μm. * = collagen fibers; black arrows = cellulose cell wall;
white arrow = fibroblast.

doi:10.1371/journal.pone.0157894.g004

Biocompatibility of Implanted Plant-Derived Cellulose Biomaterials

PLOS ONE | DOI:10.1371/journal.pone.0157894 June 21, 2016 10 / 19



Biocompatibility of Implanted Plant-Derived Cellulose Biomaterials

PLOS ONE | DOI:10.1371/journal.pone.0157894 June 21, 2016 11 / 19



production of a provisional matrix around the scaffold was also observed resulting in an
inflamed appearance in the tissue surrounding the scaffold [84–88]. This is not unexpected
and is the result of the foreign material as well as a response to the surgical procedure [84–88].
Four weeks post implantation, the population of cells within the scaffold have evolved and are
now lymphocytes, monocytes, macrophages, foreign body multinucleated cells as well as scat-
tered eosinophils. Typical with chronic inflammation, the cellular debris present in the provi-
sional matrix at 1 week, is now being cleared by the host immune system [84–88]. At 8 weeks,
the cellulose scaffold is now void of all provisional matrix and cellular debris and low levels of
macrophages and foreign body multinucleated cells are still visible within the scaffold. Consis-
tent with the immune response within the cellulose scaffold, the surrounding tissue is observed
to return to its original physiology. In fact, at 8 week implantation the surrounding tissue is
nearly similar to control tissue. Although the immune response and inflammation at 8 weeks is
low, low levels of macrophages can be observed within the scaffold. Although traditionally
associated with inflammation, macrophages have beneficial roles consistent with our findings.
Specifically, macrophages are also known to secrete growth and pro-angiogenic factors, ECM
proteins and pro-fibrogenic factors that actively regulate the fibro-proliferation and angiogene-
sis in tissue repair and regeneration [86]. Regardless, the vast population of cells within the
scaffold after 8 weeks are now reactive fibroblasts. These cells are altering the microenviron-
ment of the scaffold through the secretion of a new collagen extracellular matrix. Importantly
the new matrix displays a remarkably low density compared, suggestive of regeneration as
opposed to the characteristic high density, cable-like organization of collagen found in scar tis-
sues [89]. In the Fig 3D–3F, the majority of cells can be observed infiltrating primarily along
the periphery of the cellulose scaffold. As the cellulose scaffold is composed of interconnecting
cell wall cavities it is expected that it would be more difficult to migrate into the central portion
of the scaffold. Limited cell infiltration is an issue with all novel biomaterials and as such
researchers are constantly modifying the physical and chemical properties of established bio-
materials to enhance the cell infiltration [90–92]. Now that we have confirmed the biocompati-
bility of the scaffold, in future studies we will being to systematically modify the structure and
mechanics of the scaffolds to enable optimal cell infiltration.

Our data also demonstrates that the scaffolds are pro-angiogenic, which is critical to ensur-
ing blood transport from the surrounding tissue [93]. As with native tissue, limited blood sup-
ply to the scaffold will result in ischemia and potentially necrosis. Interestingly, it was
demonstrated that bioceramics with small pore diameters limits blood vessel diameter in vivo.
The porous structure of the cellulose scaffolds is due to overlapping cavities with an average
internal cross-sectional area of 0.013±0.007mm2 (as determined from H&E images). There was
a large distribution in the size of the cavities with diameters ranging from 100–300μmwith
minimal interconnection distance of 4.04±1.4μm. As such, the low cell wall fiber volume-frac-
tion of 16.9±3.07% of the cellulose scaffolds are consistent with the promotion of blood vessel
formation [94]. At 4 and 8 week implantation time we observed blood vessels formation within
the cellulose scaffold. Interestingly, blood vessel formation are apparent in various biomaterials
at similar implantation times [95,96]. Taken together, the cellulose scaffold now appears to
completely void of the provisional matrix and fully accepted as a subcutaneous implant.

Fig 5. Vascularization and Angiogenesis.Macroscopic observations of blood vessels directly in the
surrounding tissues around the cellulose scaffold (A). Confirmation of angiogenesis within the cellulose
scaffold by the observation of multiple blood vessel cross sections in H&E staining (B) and Masson’s
Trichrome staining (C) micrographs. The angiogenesis process was also confirmed with anti-CD31 staining
to identify endothelial cells within the cellulose scaffold (D). Scale bars: A = 1mm, B = 50μm and C-D = 20μm.
White arrows = blood vessels.

doi:10.1371/journal.pone.0157894.g005
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We also observed a decrease in the scaffold area over time, but it does not appear that the
cellulose scaffold is in the processes of degradation. Rather, the change in area is due to the col-
lapse of the cell wall cavities on the perimeter of the scaffold resulting from the active move-
ment of the mouse. Active biological degradation is not expected to be possible as mammals
lack the appropriate enzymes to digest plant-synthesized cellulose [97,98]. Moreover, the
highly crystalline form of cellulose that is found in plant tissues is also known to be resistant to
degradation in mammals [98]. Alternatively, it has been demonstrated that in vivo cellulose
based implants can be chemically activated in order to be more easily degraded [99]. Most
importantly however, highly crystalline forms of cellulose have some of the lowest reported
immunological responses [98].

A large variety of clinically approved biomaterials are used to treat specific conditions
within patients [1]. Such biomaterials can be derived from human and animal tissues, synthetic
polymers, as well as materials such as titanium and ceramics
[1,2,26,49,50,53,54,56,74,76,94,96,100–110]. However, these approaches are not without disad-
vantages that arise from concerns about the source, production costs and/or widespread avail-
ability [48]. There is currently an intense interest in developing resorbable biomaterials that
will degrade in vivo and only act as a temporary scaffold that will promote and support the
repair or regeneration of damaged/diseased tissue [49]. Although this is an ideal scenario,
newly formed structures are also found to collapse as the scaffold degrade [53,64,111–113].
Moreover, the products of degradation can also be found to have toxic or undesirable side-
effects [53,114,115]. For example, the reconstruction of the ear has become a well-known chal-
lenge in tissue engineering. Early studies have employed scaffolds in the shape of an ear that
are produced from animal or human derived cartilage [53,58,59,61,63,64]. However, after
implantation and eventual scaffold degradation, the ear is often found to collapse or deform
[60–62]. Recent strategies have now opted to create biological composite materials composed
of both a titanium frame embedded in a biological matrix [53]. Therefore, there is still a clear
need for non-resorbable, yet inert and biocompatible, scaffolds persists in the field of tissue
and organ engineering.

We suggest that plant-derived cellulose biomaterials offer one potential approach for the pro-
duction of implantable scaffolds. This approach is complementary to bacterial cellulose strategies
which have demonstrated clear utility as well [66,69–71,73,80,83,108,110,116–119]. However,
plant derived materials are cost effective to produce and are extremely straightforward to prepare
for implantation, exhibit clear biocompatibility, an ability to retain their shape while supporting
the production of natural extracellular matrix and most importantly, the promotion of vasculari-
zation. In our previous work we have shown that the scaffolds can also be functionalized with
proteins prior to culture in vitro. Such work will also be conducted in the future in order to
explore the use of scaffold surface functionalization with growth factors and matrix proteins to
promote the invasion of specific cell types, further minimize the early immune response and pro-
mote maximal vascularization. Moreover, the cellulose scaffolds can easily be formed into specific
shapes and sizes, offering an opportunity to create new tissues with specific geometrical proper-
ties. Although there are numerous new avenues of research to follow, we have been able to dem-
onstrate that acellular cellulose scaffolds are biocompatible in vivo in immunocompetent mice
and might be considered as a new strategy for tissue regeneration.
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